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We derive analytic solutions for the forced linear shallow water equation of the
following form:
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for x > 0, in which Y (x, t) denotes an unknown variable, f (x, t) a prescribed forcing
function and b a positive constant. This equation has been used to describe landslide-
generated tsunamis and also long waves induced by moving atmospheric pressure
distributions. We discuss particular and general solutions. We then compare our
results with numerical solutions of the same equation and with the corresponding
solutions of the nonlinear depth-integrated equations and discuss them in terms of
landslide-generated tsunamis.

1. Introduction
In considering tsunami generation by a moving slide on a uniform slope, Tuck

& Hwang (1972) adopted the linear shallow water equation for a uniformly sloping
beach in the following dimensionless form:
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, (1.1)

where z = ζ (x, t) is the free surface elevation and z = −h(x, t) the sea floor. On a
sloping beach h(x, t) = H (x) − h0(x, t) with H (x) = x tan β/µ; tan β is the beach
slope, h0(x, t) is the time-dependent perturbation of the sea floor with respect to the
uniformly sloping beach, δ and L are the maximum vertical thickness of the sliding
mass and its horizontal length respectively, and µ = δ/L. We have normalized the
free surface displacement and water depth with δ, and x with L, and t , as expected,
with

√
δ/g/µ. Here, we will focus on thin slides where µ = δ/L � 1. Since the shallow

water assumption requires that tan β � 1, then tan β/µ ∼ O(1).
Greenspan (1956) has also derived an equation similar to (1.1) for long waves

generated by moving atmospheric pressure distributions. Following Greenspan (1956),
we can define a dimensionless velocity potential φ so that its time derivative becomes

φt = Pa(x, t) − ζ, (1.2)
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in which Pa denotes the dimensionless moving atmospheric pressure distribution.
Once again, the free surface displacement has been scaled by δ = P0/ρg, where ρ

is the density of water and P0 the characteristic atmospheric pressure. In this problem,
the horizontal and the vertical length scales are the same, i.e. δ ∼ L and µ = 1. The
governing equation for φt over a constant sloping beach can be written in the
dimensionless form

∂2φt

∂t2
− tan β

∂

∂x

(
x

∂φt

∂x

)
=

∂2Pa

∂t2
, (1.3)

Once the atmospheric pressure is prescribed, φt as well as the free surface displacement
ζ can be calculated from the above equations.

Since (1.1) and (1.3) are of the same form, here we focus only on the former in the
context of landslide-generated tsunamis. Tuck & Hwang (1972) have shown that (1.1)
can be solved by elementary Laplace and Hankel transformations. They presented
results for several impulsive and transient beach floor movements. In the case of
transient sea floor motion, they assumed that while the amplitude of the slide changes
in time, the shape of the slide always remains the same, decaying exponentially in the
offshore direction with the same decay rate. Here, we shall first present briefly a new
solution of the forced shallow water wave equation, in which the slide is accelerating
with a constant acceleration. For this type of slide motion, the particular solution of
equation (1.1), can be obtained exactly. Specific results are obtained for slides with
a Gaussian profile. To ensure that the analytical solution is derived correctly, it is
verified with the direct numerical solutions solving the same equation (1.1). Then, the
limitations of the governing equation (1.1) are discussed by comparing the analytical
solutions with results obtained from numerical solutions of the nonlinear shallow
water equations.

Finally we note that analytical solutions for the one-dimensional constant-depth
forced equation have been presented by Tinti, Bortolucci & Chlavettieri (2001) and
Okal & Synolakis (2003). Two-dimensional solutions in integral form based on
Laplace’s equations have been presented by Pelinofsky & Poplavsky (1996) and Ward
(2001). Other semi-analytical and empirical results are also discussed in Synolakis
(2002).

2. The analytical solution
2.1. Derivation

To find the analytical solution for (1.1), we make the following substitution:

ξ = 2

√
µx

tan β
, (2.1)

and apply the Hankel transform defined as

H(ρ, t) =

∫ ∞

0

ξJ0(ρξ )ζ (ξ, t) dξ,

where J0 is the Bessel function of the first kind of order zero. Equation (1.1) becomes

∂2H
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+ ρ2H(ρ, t) =
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∂t2
, (2.2)
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where H0(ρ, t) is the Hankel transform of h0(ξ, t), i.e. of the sea-floor deformation.
Now consider a periodic ground movement, with frequency ω, of the form

h0(ξ, t) = eiω(ξ−t), (2.3)

i.e. when the acceleration of the sea-floor movement is exactly equal to g tan β/2, the
velocity is

√
gh. After some algebra, and when ω/ρ < 1 and ω, ρ > 0, the solution of

the transformed equation (2.2) can be written as

H(ρ, t) =
iω3e−iωt

(ρ2 − ω2)5/2
. (2.4)

Inverting the transform when ω/ξ < 1 and ω, ξ > 0, we obtain

ζ (ξ, t) = 1
3
(1 − iξω)eiω(ξ−t), (2.5)

implying that a particular solution for a motion h0(ξ − t) is given by

ζp(ξ, t) =
1

3

(
h0 − ξ

∂h0

∂ξ

)
. (2.6)

Thus, the particular solution is determined exactly for a specified sea-floor movement
h0(ξ − t).

The general solution of the forced equation (1.1) with a bottom perturbation
h0(ξ − t) is a combination of the particular solution (2.6) and the solution of the
homogenous equation. The homogenous solution can be expressed as

ζh(ξ, t) =

∫ ∞

0

ωa(ω)J0(ωξ ) cos(ωt) dω +

∫ ∞

0

ωb(ω)J0(ωξ ) sin(ωt) dω, (2.7)

where a(ω) and b(ω) are to be determined by the initial conditions. At t = 0,
the sum of the particular solution (2.6) and the homogenous solution, (2.7), is zero,
corresponding to an initially unperturbed water surface. This allows the determination
of a(ω). On the other hand, b(ω) can be determined by requiring ζt = h0t

at t = 0, i.e.
velocity is zero everywhere at t = 0. Thus, we find

a(ω) = −1

3
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dξ, (2.8)
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dξ. (2.9)

The analytical solution is completed by substituting (2.8) and (2.9) into the homo-
genous solution, (2.7) and then adding the resulting homogenous solution to the
particular solution (2.6).

Explicit expressions for a(ω) and b(ω) are possible for a translating Gaussian
sea-floor movement, i.e. h0(ξ, t) = exp(−(ξ − t)2). From (2.8) and (2.9), we obtain

a(ω) = −1

3

∫ ∞

0

ξJ0(ωξ )(1 + 2ξ 2)e−ξ 2

dξ = − 1
12

(6 − ω2)e−ω2/4, (2.10)

ωb(ω) =
2

3

∫ ∞

0

ξ 2J0(ωξ )(3 − 2ξ 2)e−ξ 2

dξ

= −
√
π

48
ω2e−ω2/8[(ω2 − 6)I0(ω

2/8) − (ω2 − 2)I1(ω
2/8)], (2.11)
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Figure 1. Spatial snapshots of the analytical solution at four different times for a beach slope,
β = 5◦, and landslide aspect ratio, µ = 0.05 (i.e. tan β/µ = 1.75). The slide mass is indicated
by the light shaded area, the solid beach slope by the black region, and ζ by the solid line.

in which I0 and I1 are modified Bessel functions of the first kind of order zero and
one, respectively. Therefore, the homogenous solution is given by

ζh(ξ, t) = − 1

12

∫ ∞

0

ω(6 − ω2)J0(ωξ )e−ω2/4 cos(ωt) dω

−
√
π

48

∫ ∞

0

ω2e−ω2/8[(ω2 − 6)I0(ω
2/8) − (ω2 − 2)I1(ω

2/8)]J0(ωξ ) sin(ωt) dω,

(2.12)

and the particular solution becomes

ζp(ξ, t) = 1
3
[1 + 2ξ (ξ − t)]e(ξ−t)2 . (2.13)

Of course, the complete solution is

ζ (ξ, t) = ζp(ξ, t) + ζh(ξ, t). (2.14)

2.2. Discussion of the analytical solution

The integrals in (2.12) can be integrated numerically to find ζ . In figure 1 snapshots
of the solution for ζ at four different times for a beach slope, β = 5◦, and landslide
aspect ratio, µ = 0.05, are shown (i.e. tan β/µ = 1.75). The slide mass is indicated by
the light shaded area, and ζ by the solid line. The sliding mass, partially submerged
at first, pushes water away from the beach as it begins to slide down the slope.
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A leading elevation N-wave forms, propagating in the offshore direction, as the slide
becomes completely submerged.

As a primary, fundamental check of the analytical solution, (1.1) is solved directly
numerically. Following Kirby, Dalrymple & Liu (1981), the transformation Z = xζ is
employed, yielding the transformed linear shallow water equation:

Ztt − tan β

µ

(
xZxx − Zx +

Z

x

)
= xh0t t

. (2.15)

The above equation has the advantage of simple and precise spatial boundary
conditions; namely, Z(x = 0, t) = 0 and Z(x = ∞, t) = 0. The latter assumes that 1/ζ

goes to zero faster than x goes to infinity. With the initial conditions Z(x, t = 0) = 0
and Zt (x, t = 0) = xh0t

, and a simple finite-difference time marching scheme, it is
readily shown that the numerical and analytical solutions agree almost exactly. This
exercise has served its purpose: the analytical solution is a complete and correct
solution.

Note that the solution outlined in the previous section exists for x > 0, regardless
of whether ζ +h < 0, as can be the case near ξ = 0 at the early times. This is because
in (1.1) the moving slide mass is represented only by a forcing term in the field
equation, and not by the evolving change in the water depth profile. This is a direct
consequence of dropping (h0ζx)x during depth averaging, equivalent to considering
the net horizontal mass flux caused directly by the slide motion, (uh0)x or (h0ζx)x,
as a higher-order term. The validity of this assumption will be examined in the next
section. We note here that if the solutions obtained in the previous section are applied
to atmospheric-pressure-generated waves, (1.3), this simplification is not necessary.

3. Comparison with nonlinear numerical models
3.1. Nonlinear shallow water equations

The nonlinear shallow water (NLSW) equations are

∂

∂t
(ζ − h0) +

∂

∂x

[(
tan β

µ
x − h0 + ζ

)
u

]
= 0,

∂u

∂t
+ u

∂u

∂x
+

∂ζ

∂x
= 0, (3.1)

where u is the depth-averaged velocity. Note that the above equations include the
forcing due to sea-floor movement, (uh0)x .

The numerical model employed here to solve the NLSW equations is a high-order
finite-difference scheme, described in detail in Lynett & Liu (2002). The model utilizes
a moving boundary algorithm which has been shown to be accurate for a variety of
problems (Lynett, Wu & Liu 2002). This moving boundary scheme tracks the real
shoreline, i.e. the location where ζ +h = 0, and also locations where ζ +h < 0 cannot
exist. This is noted again because, as mentioned earlier, this is not the case with the
analytical solution as an analytic function does not end abruptly at the shoreline.
It is expected that this discrepancy in the shoreline condition between the analytical
and numerical models should lead to different results, with the numerical approach
representing a better approximation to the real shoreline.

3.2. Numerical comparisons with analytical solutions

First, the linear form of (3.1) is solved using the numerical procedure described
above. This model considers (ζu)x and uux as being higher order, and they are not
calculated during the numerical integration. The linear numerical results and the
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Figure 2. Spatial snapshots of the analytical (solid line), LSW with ‘real’ shoreline (dashed
line), and NLSW solution (dotted line) at four different times for a beach slope, β = 5◦, and
µ= 0.10 (tanβ/µ= 0.87). The slide mass is indicated by the light shaded area, and the solid
beach slope by the black region.

analytical solution are shown in figures 2 and 3. The corresponding values for
the dimensionless parameter tan β/µ are 0.87 and 3.5, respectively. In both cases,
at small times (t < 1), the numerical and analytical results match well up to the
‘real’ shoreline, indicating that the moving shoreline boundary and slide-related depth
effects, i.e. (h0ζx)x , are not yet important. As time progresses, differences between the
solutions at the real shoreline (ζ + h = 0) grow, and the solutions do not agree to
a high degree near the shoreline. However, at large times the offshore wave height
and shape agrees very well. These results show the minor deficiency of the shoreline
condition used in the analytical solution due to the approximation H ≈ h. It is also
important to recognize that the agreement between the analytical solutions and the
numerical linear shallow water (LSW) solutions is better for larger tan β/µ values.

Figures 2 and 3 also show NLSW results. As with the LSW comparison, at early
times the numerical and analytical results match rather well. Up to this time, the
accumulating effects of nonlinearity are small relative to the linear driving force of
the physical problem. For later times, this is no longer the case. For tan β/µ = 0.87
(figure 2) the generated wave is propagating in a water depth of the same order as
its amplitude, and nonlinear propagation effects become important. At t = 4.5, a
classic nonlinear vs. linear comparison, where nonlinearity is important, is evident.
The nonlinear wave height is smaller, and the nonlinear crest is travelling at a faster
speed. On the other hand, for tanβ/µ = 3.5 (figure 3) both the analytic solution and
LSW numerical agree very closely with the NLSW numerical results. From these
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Figure 3. Spatial snapshots of the analytical (solid line), LSW with ‘real’ shoreline (dashed
line), and NLSW solution (dotted line) at three different times for a beach slope, β = 10◦, and
µ = 0.05 (tanβ/µ = 3.5). The slide mass is indicated by the light shaded area, and the solid
beach slope by the black region. In the lower right panel, the water depth and landslide profile
is shown at t = 1.5, the same time as shown in the lower left plot.

comparisons, we can conclude that the effects of nonlinearity, the ‘real’ shoreline
boundary condition, and the approximation of H ≈ h decrease with increasing tan β/µ

values. As the NLSW model is theoretically applicable for mild slopes only, it is
therefore expected that the analytic solution will be accurate only for small µ.

In an attempt to roughly determine when the analytical and NLSW solutions
converge, a runup comparison is now presented. Figure 4 shows the maximum
runup (free surface elevation at the shoreline) predicted by the analytical solution
and the NLSW equation. Runup given by the analytical solution decreases linearly
with increasing log(tan β/µ), until about log(tan β/µ) ≈ 0.44, where it flattens at a
runup value ≈ 0.27. It flattens because at this log[tan β/µ] value, the maximum runup
becomes the maximum free surface at x = 0, which in the analytic solution is invariant
to tan β/µ. In other words, for large tan β/µ, the maximum runup occurs after the
slide has become completely submerged. It is interesting to observe that all of the
NLSW runups fall onto one curve which is a function of tan β/µ. This NLSW curve
does not agree well with the analytic solution for small tan β/µ values, but does
converge with the analytic solution for large tanβ/µ.

Therefore, as was the conclusion when examining the spatial snapshots of figures 2
and 3, the analytical solution gives an accurate representation of the physics of the
subaerial landslide problem for large tan β/µ. The runup comparisons show that
the analytic solution will be correct for tan β/µ >10, although it was also shown that
a high degree of agreement in the spatial profiles was found for tanβ/µ = 3.5. For
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Figure 4. Maximum runup as a function of log(tanβ/µ). The analytical solutions are shown
by the solid line, and the various symbols are from NLSW simulations, corresponding to
different slopes ranging from 2◦ to 20◦.

tan β/µ less than 1, it is expected that nonlinearity will play a leading role in the
evolution of the generated wave. Nonetheless, the analytical solution produces esti-
mates differing by less than 10% up to about log(tanβ/µ) ∼ 0.5, another manifestation
of the counterintuitive predictive prowess of linear theory in calculating wave runup
on sloping beaches.

4. Concluding remarks
We derive analytical solutions for waves generated by a moving block landslide

down a sloping beach. Our derivation of linear wave generation and propagation
represents a simplified solution to a very complex and vexing problem. The analyses
imply that the analytical solutions capture the physics of the subaerial landslide
problem for thin slides, while missing the nonlinear propagation aspects of the waves
generated by thick slides. Regardless of an accurate characterization of the problem,
the analytical solution is an excellent benchmark simulation tool for wave-generating,
moving-boundary schemes in numerical models. While large-scale experiments are
currently under way to generate comprehensive data sets for model validation
(Synolakis & Raichlen 2002), analytical solutions are invaluable in helping validate
computational techniques and in establishing relevant dimensionless scales such as
tan β/µ.

We would like to thank Dr Cliff Astill, director of Geo-Hazard program at the
National Science Foundation, for his continuous support.
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